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1.0 INTRODUCTION 

In high enthalpy gaseous flows associating high velocities and/or high temperatures, physical and 

chemical processes such as vibrational excitation, dissociation, ionisation and various reactions, can take 

place. The characteristic times of these processes have often the same order of magnitude as the 

“mechanical” or aerodynamic characteristic times, so that these flows constitute typical non-equilibrium 

media. 

The best way for analysing these reactive flows in continuous or “collisional” regime consists in using a 

statistical approach by considering the macroscopic quantities as local averages of various properties of 

elementary particles (molecules, atoms, ions,…) and by taking into account their interactions resulting 

from their “collisions”. Thus, the Boltzmann equation seems to be an appropriate tool for the description 

of these flows. 

Among the methods used for solving the Boltzmann equation, the Chapman-Enskog method, consisting in 

expanding the distribution function in a series of a “small parameter” I  equal to the ratio of the 

characteristic time between collisions to a reference flow time has known a great success. However, in the 

past, it has been generally limited to the case where only one single type of collision is present in the 

medium. Thus, at relatively low temperature, when the elastic collisions are “dominant”, the behaviour of 

the system is correctly described by Navier-Stokes equations in which transport terms are satisfyingly 

calculated by the Chapman-Enskog method [1], [2], [3]. 

Now, when physical and chemical processes take place, the ratio of their characteristic times II  (inelastic 

and/or reactive collisions) to the reference flow time can take any value. The problem first is to compare 

 and I II   and to insert the terms of physical and chemical production in the hierarchy imposed by the 

expansion in a series of I  and then to compute the modifications brought to the Navier-Stokes system 

and to the transport terms [4], [5]. 

It is obvious that a great variety  of non-equilibrium situations may exist due to the numerous possible 

multi-scale physical and chemical processes. However, it is imperative that the number of collision types 

should be restricted to only two (collisions I and II), in order to avoid an expansion beyond the first two 

terms in the Chapman-Enskog expansion (Navier-Stokes level) [6]. 

The strict application of the Chapman-Enskog method to non-equilibrium situations is first presented: it 

leads to two main general approaches called WNE and SNE methods depending on the degree of non-

equilibrium considered : WNE for “weak” non-equilibrium situations and SNE for “strong” ones [7]. In 

the application of these methods to concrete cases, it is obvious that they do not match in the intermediate 

situations. That is why, a generalized Chapman-Enskog method (GCE), capable of realizing this matching 

is finally presented and developed [8], [9]. 

On the other hand, as it is impossible, in the framework of this lecture to analyse all possible situations, 

two typical situations are examined hereafter: first the case of vibrational non-equilibrium in pure gases 
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and gas mixtures and second the case of dissociating pure gases. A few results are also given for more 

complex systems [10], [11]. 

At last, applications of the results obtained from the GCE method are presented for hypersonic flows in 

which vibrational and chemical non-equilibriums simultaneously take place: they concern the kinetic rate 

constants, the transport coefficients and more generally the characteristics of hypersonic flows such as 

shock waves, boundary layers and flows around bodies [12], [13], [14].  

2.0 GENERALITIES ON NON-EQUILIBRIUM FLOW REGIMES 

2.1 The Boltzmann Equation in Reactive Systems 

In a flow of gas mixture, the Boltzmann equation governing the distribution function ipf  of the 

particles of the component p in the quantum state i can be simply written 

 
ipdf

J
dt

    ,                             (1) 

where the quantum level i includes a rotational level ri , a vibrational level vi  and, eventually an 

electronic level ei :  , ,r v ei i i i  

The collisional term J includes all types of collision, elastic, inelastic and reactive, that is 

 ...T R V CJ J J J J       ,                     (2) 

where TJ  represents the collisional balance of particles undergoing a velocity change only (elastic 

collisions),  and  R VJ J  the balance of collisions with rotational and vibrational change respectively 

(inelastic collisions), CJ  the balance of collisions with species change (reactive collisions), etc… 

These collisions may be subdivided in more specific types, such as VV collisions (both interacting 

molecules change their vibrational level) , TV (only one molecule change its level) or resonant collisions 

(they interchange their level), etc…. 

These collisions of course have different probabilities to occur, so that they have different characteristic 

times (probable times between specific collisions), ,  ,  ,  ,  T R V VV C     ,… which may differ by an order 

of magnitude. Thus, two examples are given in Figs.1 and 2 for O2 and N2 respectively. 

In these conditions, we may write the Boltzmann equation (1) in the following dimensionless form: 

 

*

* * * *

*

1 1 1 1
...

ip

T R V C

T R V C

df
J J J J

dt    
         ,                       (3) 

or any other form adapted to the specific case considered. 

In Eq.(3), we have: T
T





  ,  R

R





  , V

V





  , ……, 

where   represents the “aerodynamic” reference time, depending on the problem under study and that 

may take considerably different values. 
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As stated in the introduction, we will consider only two collisional characteristic time scales  and I II   , 

so that all collisions are classified in two groups, for example elastic collisions in group I and inelastic in 

group II; or TRV collisions in group I and reactive in group II, etc… Thus, we will simply write Eq.3 in 

the following form: 

 

*

* *

*

1 1ip

I II

I II

df
J J

dt  
            (4) 

  

 
Figure 1: Translation, rotation, vibration, dissociation characteristic times  (Nitrogen) 

 

 

Figure 2:  Translation, rotation, vibration, dissociation characteristic times  (Oxygen) 
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2.2 Chapman-Enskog expansion: Flow regimes 

Considering flows in “collisional regime”, we may assume that the collisions I are dominant (the 

most probable), so that 1,  ( )I I   . In this case, we can classically expand ipf  in a series of 

I  , that is * 0* 1* ...ip ip ipf f f        , 

or, stopping the expansion at the first order: 

  * 0* *1ip ip ipf f      ,          (5) 

where 0

ipf  is the zero order distribution function and 1

ipf  the first order one, with 1 0

ip ip ipf f   and 

1ip . 

Now, we have to substitute the expansion (5) in Eq.(4) and to introduce the collisional term II 

into the expansion. In order to do that, there are three possibilities: 1) 1II , that is
1

II


, 

2) 1II , that is II  , or 3) 1II .  

In the first case, we obtain the following system giving successively 0  and ip ipf  : 

 

0

0

1

0I

ip

I

J

df
J

dt




             (6) 

Thus, the collisions II have no influence on the zero and first order distribution function. This corresponds 

to the “frozen case” for the collisions II.  

On the contrary, in the case 2), the collisions II play the same role as the collisions I in the determination 

of the distribution function, since we have the following system to solve: 

 

 

 

0

0
1

0I II

ip

I II

J J

df
J J

dt

 

 
                       (7) 

In the intermediate case 3), we have the following system: 

 

0

0

1 0

0I

ip

I II

J

df
J J

dt



 
          (8) 

Thus, we can dismiss the frozen case which brings nothing new in comparison with the classical CE 

method used when only one type of collision is considered. 

Considering now the case 2), we easily find that, at the zero order of the system (7), the Euler equations 

govern the system with an equilibrium distribution (levels and species) for the zero order distribution 

function 
0

ipf . On the contrary, in the case 3), at zero order of the system (8), the Euler equations must be 

closed by kinetic equations (species) and/or relaxation equations giving the evolution of “populations” due 

to collisions II in the time scale  : this corresponds to a non-equilibrium situation. 
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At first order, the linear integral-differential equations allow to obtain the perturbation ip and the Navier-

Stokes equations govern the system, but kinetic and/or relaxation equations are still necessary in the case 

3) and, moreover, the collisions I and II appear in a different way in cases 2) and 3). 

It is also to be noted that, whatever the form of 
0

ipf  is, in equilibrium or not, the first order solution always 

exhibits a non-equilibrium which remains small because of the linearisation. Therefore, the solution 

obtained from Eqs.(7) corresponds to a weak non-equilibrium case called WNE regime and the solution 

corresponding to Eqs.(8) is denoted SNE regime (strong non-equilibrium). 

The cases presented above may hide complex situations: first, the indices I and II represent various types 

of collisions, either simple (T, R, V, C), complex (TR, TRV,…), or particularized (VV, resonant…) ; thus 

the specific situations are numerous. 

Furthermore, each type of regime may apply to one or several types of collisions. For example, we call 

(WNE)I+(SNE)II a weak non-equilibrium regime for the collisions I and a strong non-equilibrium for the 

collisions II. If, as a standard example, we consider the case of a pure gas in a strong vibrational non-

equilibrium, we call this case (WNE)TR+(SNE)V. In the same way, if the chemical non-equilibrium is 

significant at the zero order and if the vibrational non-equilibrium is “less” important, we call this regime 

(WNE)TRV+(SNE)C, or simply (WNE)V+(SNE)C, etc…Simple typical examples are presented below. 

3.0 VIBRATIONALLY RELAXING GASES 

3.1 Zero Order Solutions 

Pure diatomic gas flows are first considered. The equilibrium zero order solution (Maxwell-

Boltzmann) is well known and is obtained from the equation: 0 0TRVJ  . Thus, the “normal” 

solution is 

  

   3
22

0
expexp

exp
2 2

vr r ii i

i

R V

kTg kTm mu
f n

kT kT Q Q





  
   

                      

(9) 

                                    

 

with usual notations: n number density, m molecular mass, T temperature, ,  
r vi i  rotational and 

vibrational energies per molecule, ( ),  ( )R VQ T Q T rotational and vibrational partition functions, g 

statistical weight. One single temperature T is defined. The macroscopic quantities are given by 

Euler equations. 

3.1.1 General non-equilibrium situations 

The most general non-equilibrium situation corresponds to the equation 0 0TRJ  , that is the 

collisions I include the T (elastic) and R collisions and the collisions II include all V collisions. 

Thus, we have 

  
 3

22
0

exp
exp

2 2

r r

v

i i

i i

R

g kTm mu
n

kT kT Q
f





  
   

   
                  (10)  

The corresponding macroscopic equations are the Euler equations and the relaxation equations 

giving the vibrational populations 
vi

n , that is 

, ,

, ,

, , ,

.
v v

r

i i i j k l

k l k l i j i j

i j k l

n n
n n a n n a

t

 
  

 


V

r
 ,                                                 (11) 
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where V is the macroscopic velocity, kl

ija  and ij

kla  the collision rate coefficients corresponding to 

the transitions , ,i j k l , independent of the populations. 

3.1.2 Particular non-equilibrium situations 

Now, if particular highly probable collisions with vibrational exchanges are included in collisions 

I, the vibrational populations take specific forms. Thus, three important examples are briefly 

presented hereafter. 

 TV collisions are dominant and are included in collisions I; we have: 

 0TVJ     

In this case,  the solution is given by the relation (9), which means that the TV    collisions 

are sufficient to establish an equilibrium regime. 

 VV collisions are dominant [15] and are included in collisions I; in this case, we find a 

non-equilibrium distribution (10), with  

 
 
 

exp

exp

v

v

v

v

i v

i

i v

i

kT Ki
n n

kT Ki





 


 
  (Treanor distribution)   (12)                                 

     The macroscopic parameter K is given by the following unique relaxation equation: 

  1 1exp 1 v

v v

v

iV
i i

i

dI
K a n

dt
         , 

where VI is a mean quantum number defined as 
v

v

V i v

i

nI n i and where, here, only  

monoquantum transitions are assumed to take place. 

This distribution presents a minimum  for a particular quantum number, so that         

“population  inversions” are possible , especially in gas mixtures.  

 Resonant collisions  v v v vi j j i   are dominant and are included in collisions I. In 

this case, we find a Boltzmann distribution at a “vibrational temperature” VT , that is 

 
 
 

exp

exp

v

v

v

v

i V

i

i V

i

kT
n n

kT









        (13) 

This temperature is also given by a unique relaxation equation giving the mean vibrational energy VE . 

In order to complete the previous equations, a physical oscillator model is required. For example, the 

choice of the simple harmonic oscillator model, leading to the Landau-Teller relaxation equation 

simplifies the problems but may mask detailed (and essential) features of the relaxation… 

On the other hand, before choosing a global model (Boltzmann, Treanor,…), it is essential to determine its 

domain of validity: thus, for example at low temperature, the VV collisions are more probable for the low 

levels and the TV collisions more probable for the highest levels at high temperature: An example [16] is 

presented in Fig.3. 
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Figure 3:  TV and VV collision rates (
2 2

N - N  , T=1000K) 

 

From a general point of view, the macroscopic parameters appearing in 0

if  are given by the 

conservation equations including Euler and relaxation equations corresponding to the Fredholm 

alternative of the first order equation of the system (8), that is 

 
0

0( ) 0i
II i

df
J C d

dt
 

v

v   , 

where IC  are the collisional invariants of collisions I. 

3.2 First order solutions. Transport Terms 

3.2.1 WNE Case 

This is a relatively classical case. We start from the equilibrium zero order solution (9) and we 

have to solve the equation 
0

1i
TRV

df
J

dt
 . Taking into account the form of the known terms 

0

idf

dt
 

and various constraints related to the definition of macroscopic parameters with 0

if , we can write 

the perturbation i  in the following form: 

 
01 .

. :i i i i

T
A B D

T


  
  

  

V V
u uu

r r r
   ,        (14) 

where ,  ,  i i i iX A B D  are unknown scalar functions of ,  ,  ,  ,  
r vi it u  r . Classically, each term iX  

is expanded in Sonine-Wang-Chang-Uhlenbeck polynomials [17], that is 

 
, ,

m n p

i mnp T R V

m n p

X x S P P     ,         (15) 

with ,  ,  x a b d . In the expansion (15), only zero and first order terms are retained, i. e. 000x , 

100x , 010x , 001x ; each index corresponds to the order of expansion respectively for translation, 
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rotation and vibration. These terms are determined from particular equations involving the 

corresponding terms of 
0

idf

dt
. Because of the properties of the orthogonal expansion (15), they 

can be expressed as functions of “collisional integrals”, defined as follows: 

  
1

2
2 3 ,

,2
, , , ,

... exp (...)
i j k l

i j

i j k l

n nkT
I d d

m n


  




 
     

 
     ,      (16) 

where the populations ,  i jn n  are in equilibrium and where ,

,

k l

i jI  is the differential cross-section of 

the transition , ,i j k l , 

1
2

2

m
g

kT


 
  
 

 a dimensionless relative velocity and   the diffusion 

solid angle. These integrals involve all types of collision. 

At the macroscopic level, the Navier-Stokes equations govern the evolution  of macroscopic 

quantities ,  ,  n TV  and the corresponding transport terms are the following: 

 Stress tensor: 'p P I P  , with : 

0

' .
2 

 
  

 
P I

V V

r r
 

 Heat flux: T R V

T



    


q q q q
r

 ,                (17) 

where the viscosity and conductivity coefficients ,  ,      are also known functions of collisional 

integrals of type (16). More details and approximate expressions may be found in Ref.24 . Thus, 

we can see that T p   and V p  . It is important to note that a “weak” rotational and 

vibrational non-equilibrium appears at first order of the expansion of the distribution function: 

since generally V R  , we find for the vibrational non-equilibrium: 

  
.

V V VE E 





V

r
           (18) 

Temperatures, specific to each energy mode ,  ,  T R VT T T  may thus be defined at first order but this 

is independent of the definition of a single “average” temperature T, common to the three modes 

and given by Navier-Stokes equations. It may be also noted that the difference between TT  and 

RT  is of the order of R , so that it is generally possible to define a common temperature TRT , 

which is of course not the case for TT  and VT . 

3.2.2 SNE Case 

We start from the zero order non-equilibrium solution (10), with vibrational population given by 

Eq. (13) in which the dominant collisions include the vibrational resonant transitions: this enables 

us to preserve the notion of vibrational temperature VT . Thus, the first order equation is the 

following: 

  
0

1 0i
TR V

df
J J

dt
          (19) 

Taking into account the zero order terms 
0

0i
V

df
J

dt
 , we can write the perturbation i  in the 

following form: 
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01 . 1

. : .V
i i i i i i

V

TT
A B D F G

T T


  
    

   

V V
u uu u

r r r r
   ,   (20) 

where, as above, ,  ,  ,  ,  i i i i i iX A B D F G  are unknown scalar functions of ,  ,  ,  ,  
r vi it u  r . 

The last two terms in Eq.(20) arise from the vibrational non-equilibrium already present at zero 

order. 

Expanding iX  as above (15), we can also express the coefficients x as functions of collisional 

integrals: however, as expected from Eq.(19), these coefficients (except g) depend on integrals 

including only the collisions I, that is here the TR collisions, noted ... TR  . The coefficients g 

directly depend on the vibrational relaxation, because of the 0

VJ  term. 

The macroscopic conservation equations are also the Navier-Stokes equations, completed by 

relaxation equation giving Ve  or VT , that is 

   0 1.
v

V V
i V V

i

dE
n J J d

dt



  


 

v

q
v

r
                                        (21) 

Of course, a physical oscillator model is necessary. 

Moreover, the transport terms in the Navier-Stokes equations become 

 Stress tensor:  

0

.
2 Rp p  

  
   

  
P I I

V V

r r
          (22)   

 Heat fluxes :  T R V  q q q q   ,  with 

  

V
T T TV

V
R R RV

V
V VTR V

TT

TT

TT

 

 

 


  

 


  

 


  

 

q
r r

q
r r

q
r r

       (23) 

  

Thus, in the stress tensor (22) we find the “usual” terms and a “relaxation pressure” term Rp  

(related to 0

VJ ). In the heat flux expressions (23), we find cross terms depending on both 

temperature gradients. However, as already discussed, the transport coefficients 

,  ,  ...   include only TR collisions (and resonant V collisions). The bulk viscosity   for 

example depends only on R . 

Thus, starting from zero order solutions, either in equilibrium or not, we find structural 

differences in the description of non-equilibrium situations at first order. This is summarized in 

Table I. 
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Table I 

Comparison of WNE and SNE methods for vibrationally relaxing gases 

 

It is thus obvious that there is no matching between both first order solutions when VT T . That 

is why, a generalized Chapman-Enskog method (GCE) is proposed hereafter. 

3.2.3 GCE Method 

The matching between WNE and SNE cases is simply realized by adding a 1

IIJ  term in the 

linearized equation of the SNE system (8), so that this system becomes: 

  

0

0
1 0 1

0I

i
I II II

J

df
J J J

dt



  
           (24) 

At zero order, we have the SNE solution covering, as previously discussed, the non-equilibrium 

and equilibrium situations (Euler system + kinetic and/or relaxation equations). At first order, far 

from equilibrium the 1

IIJ  term is negligible and we find the SNE solution, but close to 

equilibrium 0 0IIJ   and the first order solution is the WNE  solution. 

The first order equation of the system (24) is however more difficult to solve than in the WNE or 

SNE cases because of the structure of the operator 1

IIJ . Thus, this operator, contrary to 1

IJ  is not a 

 

         Method 

 

                  WNE 

 

                     SNE 

 

 

 

 

Zero order 

 
0 0TRVJ   

TRV equilibrium, with single 

temperature T. 

Euler equations 

 
0 0TRJ   

TR equilibrium, with 

 common temperature T. 

Vibrational non-equilibrium, with 

temperature TV. 

Euler equations, with 

      vib. relaxation equation 

 

 

 
       First order 

 
0

1i
TRV

df
J

dt
  

Weak RV non-equilibrium. 

Navier-Stokes equations 

 
0

1 0i
TR V

df
J J

dt
   

Weak R non-equilibrium. 

Navier-Stokes equations, with 

vib.relaxation equation 

 

 

 

Transport 

 
Transport terms , ,    

depending on TRV collisions. 

Heat fluxes depending on the 

gradient of T 

 

Transport terms , , , ,T R V      

depending on TR collisions  

Heat fluxes depending on the 

gradients of T and TV 
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self-adjoint operator, but it may be decomposed into two operators; among them the dominant 

term 1A

IIJ  is self-adjoint and the other may be neglected. Finally, in the present case of vibrational 

non-equilibrium, we can write the system in the following way: 

  

0

0
1 0 1

0TR

Ai
TR V V

J

df
J J J

dt



  
            (25) 

As previously discussed, the zero order solution of the system (25) is the SNE solution (13) with 

Euler and relaxation equations. The perturbation i  is given by Eq.(20) and we have the same 

equations for the coefficients iX , but, in these equations, the operator 1

TRJ  is replaced by 

1 1A

TR VJ J . Thus, solving the equation systems giving the coefficients x, we have to add collisional 

integrals ... V   to collisional integrals ... TR   similar to integrals (16), that is: 

      
1

2
2 3 ,

,2

, , , ,

... exp ...r ri j k l

TR i j

i j k l

n nkT
I TR d d

m n


  




    
  
  

   
         (26) 

 

 

     

1
2

4
2 3 ,, , ,

,

,

1 exp 1
1

...
2

exp ...

r r v v

v
i j i j V

V
k li j k l

i j

T

n n n nkT T

m n
I V d d






  




    

                         
 

  




  , (27) 

where 0v vv v i jk l

v
kT

   


  
    and where ,  

v vi jn n are vibrational non-equilibrium 

populations. 

Thus, in integrals ... V   the non-equilbrium appears explicitly. Navier-Stokes equations, of 

course, remain valid as well as relaxation equations similar to Eq.(21), but the transport 

coefficients such as ,  ,  ...   depend on the relaxation explicitly. For example, the viscosity 

coefficient   may be written as follows: 

  
1

1
TR

R
 


    ,            (28) 

where R represents the ratio of two integrals similar to (26) and (27), that is V

TR

R




 

 

. 

For the heat transfer terms, we find expressions similar to those of the SNE system (23), but, 

when VT T , we find the expressions of the WNE case (17) for the conductivity coefficients. 

Approximate expressions may be obtained and the GCE method can be extended to gas mixtures: 

details may be found in Ref.10 . An example of vibrational conductivity is represented in Fig.4. 
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Figure 4: Vibrational conductivity of nitrogen in a mixture (air)     

( : 3000 , : 1000 , : 800 , : 500 , :
V V V V V

A T K B T K C T K D T K E T T        ) 

 

4.0 DISSOCIATING GASES 

4.1 (WNE)V+(SNE)C Case 

We consider dissociating polyatomic gases; as generally the characteristic chemical times are 

larger than vibrational relaxation times (Figs.1 and 2), we consider a WNE case for vibration and 

a SNE case for chemistry, that is a (WNE)V+(SNE)C case. For a molecular component p, we have 

therefore the following system: 

 0

1 0

0TRVp

ip

TRVp Cp

J

df
J J

dt



 
              (29) 

At zero order, we have a Maxwell-Boltzmann distribution (9) and corresponding Euler equations 

closed by kinetic equations of the following type: 

 0
.

p p

p p

p p Cp p

i

w m J d
t

  
  

 
 

v

V
v

r
                                      (30) 

Considering first only a dissociating pure gas, we have two species, molecules p and atoms q. 

Neglecting the recombination process, we simply have 

 2p

D p

p

w
k n

m
     ,               (31) 

where  D Dk k T  is the Arrhenius dissociation rate coefficient. 

At first order, we can write the perturbation ip in the following way: 

                     

01 .
. : .ip ip p ip p p ip ip ip p p

T
A B D G L

T


  
    

  

V V
u u u u d

r r r
      (32)                                     

Comparing with the previous expressions for ip , we see in Eq.(32) a diffusion term ipL . 
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The transport terms of the Navier-Stokes equations may be calculated as above but also the 

dissociation rate constant at first order; thus we find 

 001 001

.
1 V VD

D D

E E
k k g d

kT

   
     

   

V

r
       (33) 

Similarly, we find for the vibrational energy at first order 

 
001 001

.
1V VE E g d

 
   

 

V

r
    ,          (34) 

so that combining (33) and (34), we obtain an expression for the rate constant depending on the 

vibrational non-equilibrium, i.e. 

 1 V V VD V
D D

V

E E E E
k k

E kT

    
    

   
   ,      (35) 

where VDE  represents the vibrational energy loss due to dissociation (at zero order). 

We need a physical model of course in order to have a complete expression: details may be found 

in Ref.11. 

4.2 (SNE)V+(SNE)C Case 

We consider simultaneous vibrational and chemical non-equilibriums. Thus, we have 

 

0

0

1 0 0

0TRp

ip

TRp Vp Cp

J

df
J J J

dt



  
       (36) 

At zero order, we have simultaneously a vibrational relaxation and a chemical production.  

This case has been widely analysed in the past at the macroscopic level [19], [20], [21]: 

dissociation rate constants are modified and, depending on various assumptions and models, 

expressions for  ,  D D Vk k T T  have been obtained. Similarly, the usual vibrational relaxation 

equation is modified because of the dissociation. 

However, at first order, no important interaction takes place, since the first order terms depend 

only on rotational relaxation, generally negligible. It is the same for the transport terms which do 

not depend on vibration (see previous SNE cases). Further discussions may be found in Ref.24. 

An example of comparison for the ratio 
 

 

,D V

D

k T T
V

k T
  computed from different models is 

represented in Fig.5. 

4.3 Tentative general solution 

In an attempt to unify the calculation methods of relaxing and reacting gas flows at the 

macroscopic level, we suggest to use the Navier-Stokes equations closed with species 

conservation equations (kinetic equations) and vibrational relaxation equations taking the 

chemical reactions into account: this is an SNE formulation, but the reaction rate constants are 

computed with the WNE model [8]. 

For example, in the simple case of dissociating pure gases, the formula for Dk  is given by Eq.(35) 

and the relaxation equation may be written as follows, if we use the harmonic oscillator model:

  V V V
V VD D p

V

dE E E
E E k n

dt 


            (37) 
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The term VDE , is calculated at first order, like Dk . We can note that realistic values for VDE  lie in 

the range 0.3-0.5 DE  [13].  

In this framework, the transport terms may be used in their GCE formulation which takes into 

account the vibrational relaxation. From a general point of view, it is also recommended to use 

these terms in their dimensionless form, less sensitive to non-equilibrium effects. 

Extensions to dissociating-recombining case and to gas mixtures including atomic and molecular 

components as well as numerous reactions have been carried out. A few examples are given 

below.  

 

 
Figure 5: Vibration-dissociation factor V for nitrogen, T=2.10

4
 K 

C V
 A:  (SNE) +(WNE) Case  : Non-preferential anharmonic oscillator model  

C C
 B:  (SNE) +(WNE) Case  : Preferential model, 

D
-U= E 6k  [20] 

C : Semi-empirical model [21] 

 

5.0 APPLICATIONS TO HYPERSONIC FLOWS 

5.1 Shock Waves 

We consider the flow behind a straight strong shock wave moving in quiescent air, with the following 

conditions: 0 025,  8.5 ,  205SM p Pa T K   . A classical chemical model including 17 reactions is 

adopted and the classical Landau-Teller equations for the molecular components are used; however, 

formulas of the type (35) are used for the chemical rate constants involving dissociation and exchange 

reactions and the relaxation equations include energy loss (gain) due to chemical reactions (cf Eq.37). 

One-dimensional Euler equations are also used [12]. 

An example of variation of a dissociation rate constant (N2) behind the shock is shown in Fig.6 and 

compared to the corresponding Arrhenius rate constant. Thus, strong differences may be pointed out due 

to the vibrational relaxation in the region where  2VT N T . 
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The evolution of the vibrational temperatures is represented in Fig.7 where we can see a 

minimum for  2VT O  which does not exist without vibration-chemistry interaction. 

In order to give an idea about the order of magnitude of the “relaxation pressure” Rp , the 

evolution of Rp
p

is represented in Fig.8: thus, close to the shock wave, we see that this ratio is of 

the order of a few per cent. 

 
Figure 6: Dissociation rate constants of nitrogen behind a shock wave in air 

s 0 0M =25, p =8,5Pa, T =205K  

A: Dk  Arrhenius,   B: Dk  with interaction,  C: Dk  empirical  

 

 

Figure 7: Spatial variation of temperatures behind a shock wave 

in air (Conditions of Fig.6)  
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Figure 8: Relaxation pressure behind a shock wave in air 

(Conditions of Fig.6) 

5.2 Boundary Layers 

We consider the boundary layer in vibrational and chemical non-equilibrium developing at the 

end-wall of a shock tube after the reflection of the incident shock wave. The reflected shock wave 

propagates in the non-equilibrium medium generated by the incident shock wave: an example is 

represented in Fig.9, [13].  

What is of interest here is the behaviour of the rate constants in the end-wall boundary layer; thus, 

the time evolution of the vibrational non-equilibrium across the boundary layer is represented in 

Fig.10 in which we can see a vibrational freezing zone  VT T appearing some time after the 

reflection, due to the migration towards the wall of high energy molecules. The result is an 

increase of the dissociation rate constant in this zone in spite of the decrease of T (Fig.11). The 

phenomenon is accentuated when the wall is non-catalytic.  

 

 
Figure 9: Temperature distributions behind a reflected shock wave 

 (Nitrogen, S 0M =12, p =200Pa ) 

Time after reflection :1 :15µs, 2 :25µs, 3 :40µs, 4 :400µs, 5 :500µs, 6 :600µs, 7 :700µs 
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Figure 10: Vibrational non-equilibrium distribution across the boundary layer 

(Conditions of Fig9,   : Von Mises transverse coordinate),  

Time after reflection : Α :25µs, B :500µs, C : 900µs 

Full line : Catalytic wall.    Dotted line : Non-catalytic wall 

 

 
Figure 11: Dissociation rate constants across the boundary layer 

(Conditions and notation of Fig.9) 

 

5.3 Flows around Bodies 

Comparisons of results obtained from Navier-Stokes computations using the present model discussed 

above with experimental results carried out in shock tunnel and ballistic range are presented in Figs.12 and 

13. In fact, they refer to the shock stand-off distance over hemisphere-cylinder bodies: this parameter is 

sensitive to the non-equilibrium effects, as it may be seen in the figures [14]. The good agreement 

observed between experimental and simulated values gives support to the reliability of the models used. 
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Figure 12: Measured (•) [22] and computed  

stand-off distances in carbon dioxide flow (shock tunnel) 

 

 
Figure 13: Measured [23] and computed shock stand-off distances 

4 22.10 /R kg m    ,     : Experiments (gun tunnel) 
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6.0 CONCLUSIONS 

Much work remains to be done in the field of kinetic theory of reactive molecular gases: more elaborate 

models, STS models, inelastic and reactive cross-sections, electronic transitions, direct simulations, 

complete GCE method, …. The results presented above, however, prove a relative maturation of ideas and 

methods, so that reliable computations of non-equilibrium flows may be carried out. 
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